TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 352, Number 4, Pages 1947–1949 S 0002-9947(99)02596-9 Article electronically published on December 7, 1999

CORRECTION TO "HARISH-CHANDRA'S PLANCHEREL THEOREM FOR p-ADIC GROUPS"

ALLAN J. SILBERGER

K. Hiraga [1] has informed the author that the proof of Theorem 5 given in [2] is incorrect, and he has also supplied a correct proof for this result. In what follows the author will present, with insignificant modifications, the example and the argument of Hiraga's letter.

First, as Hiraga points out, the numbers $C(\overline{n})$ of [2, 3.28] are not in general finite, as the following example makes clear. We employ the notation of [2]. Let π denote a prime element of the p-field Ω . For the moment take $\mathbf{G} = \mathrm{GL}_3$, \mathbf{P} the upper triangular subgroup, and $\overline{\mathbf{N}}$ the lower triangular unipotent subgroup of \mathbf{G} . The set F of [2, §2], a fundamental set for the Cartan decomposition of \mathbf{G}/\mathbf{Z} , consists of the set of matrices

$$m = \begin{bmatrix} \pi^{-\ell_1 - \ell_2} & 0 & 0 \\ 0 & \pi^{-\ell_2} & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

where ℓ_1, ℓ_2 are non-negative integers. For the example take

$$\overline{n} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \pi^{-1} & 1 \end{bmatrix}.$$

Then the number of elements $C(\overline{n})$ of the set

$$\{m \in F = S(P) \mid \overline{n} \notin m^{-1} \overline{N}_j m\},\$$

is not finite, since $\overline{n} \notin m^{-1} \overline{N}_j m$ if and only if $\ell_2 \leq j$ and ℓ_1 is arbitrary. Clearly, the estimate of [2, 3.29] fails.

To create valid estimates and save the concluding argument of [2, Theorem 5], expressed in equations [2, 3.30-31], Hiraga proceeds as follows. First, he partitions F via a subtler relation than was employed in [2, mid-page 4681]. Let $\Sigma^0(P,A) = \{\alpha_1, \ldots, \alpha_l\}$, the set of simple roots. Then $m \in M_0^+/{}^0M_0Z = F$ if and only if

(1)
$$H(m) = \sum_{i=1}^{l} j_i \lambda_{\alpha_i},$$

Received by the editors May 15, 1999.

²⁰⁰⁰ Mathematics Subject Classification. Primary 22E50.

Key words and phrases. Discrete series, induced representations, Plancherel theorem, reductive \mathfrak{p} -adic group, Schwartz space, tempered representation.

The author wishes to thank Hiraga for informing him of the mistake in his paper and communicating in detail a correct argument. The author wishes also to take this opportunity to apologize for publishing an incorrect proof of this important theorem.

where $j_i \geq 0$ (see [2, 3.9]). For $m \in F$ define

(2)
$$\iota(m) = \min\{i \,|\, j_i = \max\{j_1, \dots, j_l\}\}$$

and

$$F_{\iota} = \{ m \in F \,|\, \iota(m) = \iota \}.$$

Let $\overline{P}_0 = M_0 \ltimes \overline{N}_0$ be the opposite minimal parabolic subgroup of P_0 . As the argument of [2, Theorem 5] implies, it is sufficient to show that, for $f \in {}^0\mathcal{C}(G)$,

(3)
$$\sum_{m \in F_{\iota}} \left| \int_{m^{-1}(\overline{N}_0 \cap K_j)m} f(\overline{n}_0) \right| < \infty$$

for every $\iota = 1, \ldots, l$. Thus it suffices to fix ι and to prove (3). Let $\overline{P} = M \ltimes \overline{N}$ be the opposite parabolic subgroup of the standard maximal parabolic subgroup corresponding to $\Sigma^0(P_0, A_0) - \{\alpha_{\iota}\}$ and let ${}^*\overline{N} = M \cap \overline{N}_0$. Then

$$\overline{N}_0 = {}^*\overline{N} \ltimes \overline{N}$$

and

$$\overline{N}_0 \cap K_j = ({}^*\overline{N} \cap K_j) \ltimes \overline{N}_j.$$

Since $f \in {}^{0}\mathcal{C}(G)$,

$$\int_{m^{-1}(\overline{N}_0 \cap K_j)m} f(\overline{n}_0) d\overline{n}_0 = \int_{m^{-1}(*\overline{N} \cap K_j)m} \int_{m^{-1}\overline{N}_j m} f(*\overline{n} \cdot \overline{n}) d^* \overline{n} d\overline{n}
= -\int_{m^{-1}(*\overline{N} \cap K_j)m} \int_{\overline{N} - m^{-1}\overline{N}_j m} f(*\overline{n} \cdot \overline{n}) d^* \overline{n} d\overline{n}.$$

For any $\overline{n}_0 = {}^*\overline{n} \cdot \overline{n} \in \overline{N}_0$ we define $C({}^*\overline{n} \cdot \overline{n})$ to be the cardinality of the set

(4)
$$S({}^*\overline{n} \cdot \overline{n}) = \{ m \in F_{\iota} \mid {}^*\overline{n} \cdot \overline{n} \in m^{-1}({}^*\overline{N} \cap K_j) m \cdot (\overline{N} - m^{-1}\overline{N}_j m) \}$$
$$= \{ m \in F_{\iota} \mid m {}^*\overline{n} m^{-1} \in {}^*\overline{N} \cap K_j \text{ and } m \overline{n} m^{-1} \notin \overline{N}_j \}.$$

Lemma 3. $C(*\overline{n} \cdot \overline{n}) < \infty$ and, more precisely, $C(*\overline{n} \cdot \overline{n}) \prec (\sigma(*\overline{n} \cdot \overline{n}) + 1)^l$.

Proof. It is enough to check that $C(*\overline{n}\cdot\overline{n}) \prec (\sigma(\overline{n})+1)^l$, since $\sigma(\overline{n})+1 \prec \sigma(*\overline{n}\cdot\overline{n})+1$. In particular, it suffices to show that

(5)
$$|\{m \in F_{\iota} \mid m\overline{n}m^{-1} \notin \overline{N}_{j}\}| \prec (\sigma(\overline{n}) + 1)^{l},$$

since the additional condition of (4) can only make the left side of (5) smaller. We recall that the roots which occur in the Lie algebra of $\overline{\mathbf{N}}$ consist of exactly those negative A_0 roots β such that $\langle \lambda_{\alpha_{\iota}}, \beta \rangle < 0$. This means that \overline{N} may be regarded as a product of lines, each line a copy of the gound field Ω and each line contracted by the effect of multiplication by a rational character of M_0 under the mapping $\overline{n} \mapsto m\overline{n}m^{-1}$ for any $m \in F_{\iota}$ (assuming, as we may, that $j_{\iota} > 0$ in (1)). The function $\overline{n} \mapsto \sigma(\overline{n})$ has non-negative values on \overline{N} , is positive outside some compact neighborhood of the identity, and is bounded on compact subsets of \overline{N} . More precisely, there exist positive constants $C(\iota, j)$ such that if j_{ι} in (1) is chosen such that

(6)
$$j_{\iota} > C(\iota, j)(\sigma(\overline{n}) + 1),$$

then $m\overline{n}m^{-1} \in \overline{N}_i$. Using [2, Lemma 2], (1), and (2), we have

CORRECTION 1949

(7)
$$|\{m \in F_{\iota} \mid j_{\iota} = k\}| = O(k^{l}) \qquad (k > 0).$$

Combining (6) and (7) completes the proof.

Using Lemma 3, we can now prove (3) almost by repeating the argument of [2, 3.27, 3.30-31]:

$$\sum_{m \in F_{\iota}} \left| \int_{m^{-1}(\overline{N}_{0} \cap K_{j})m} f(\overline{n}_{0}) d\overline{n}_{0} \right| \prec \int_{\overline{N}_{0}} \delta_{P_{0}}^{-1/2}(\overline{n}_{0}) C(\overline{n}_{0}) (1 + \sigma(\overline{n}_{0}))^{-r} d\overline{n}_{0}$$
$$\prec \int_{\overline{N}_{0}} \delta_{P_{0}}^{-1/2}(\overline{n}_{0}) (1 + \sigma(\overline{n}_{0}))^{-r+l} d\overline{n}_{0} < \infty$$

for all r sufficiently large.¹

References

- 1. Kaoru Hiraga, Letter to Allan J. Silberger dated February 23, 1999.
- Allan J. Silberger, Harish-Chandra's Plancherel Formula for p-adic Groups, Trans. Amer. Math. Soc. 348 (1996), 4673–4686. MR 99c:22026

Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115 $E\text{-}mail\ address:}$ silberger@ math.csuohio.edu

¹Please note: The groups \overline{N}_j and N_j of [2, p. 4674, the last paragraph] are not normal subgroups of K_j ; each is normalized by K_j^M .